
International Jourmtl ¢!1" Thermol~hy.~'i(.s. I ' O / l  16. ~ ~ l j~ j 1995 

A New Nonrandom Lattice Fluid Model and 
Its Simplification by Two-Liquid Theory for 
Phase Equilibria of Complex Mixtures ~ 

M. S. Shin, -~ K. P. Yoo, 2'~ S. S. You, 4 and C. S. Lee 5 

A new riogorous equ;,tion of state (EOSI and its simplified version have been 
proposed by the present authors based on the full Guggenheim combinatorics 
of the nonrandom lattice hole theory. The simplified EOS. with the introduction 
of the concept of local composition, becomes similar to the density-dependent 
UNIQUAC model. However. in the present approach we have a volumetric 
EOS instead of the excess Gibbs function. Both EOSs were tested for their 
applicability in correlating the ph~ise equilibria behavior of pure components 
and complex mixtures. Comparison of both models with experiment includes 
such systems as nonpolar nonpolar, nonpolar polar, and polar,,polar hydro- 
carbons, supercritical systems, and polymer solutions. With two parameters Ibr 
each pure component and one binary interaction energy parameter, results 
obtained to date demonstrate that both formulations are quantitatively 
applicable to complex systems oer a wide range of temperatures, pressures, and 
concentrations. 
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1. I N T R O D U C T I O N  

V a r i o u s  f o r m u l a t i o n s  o f  t h e r m o d y n a m i c  theor i e s  of  s o l u t i o n s  can  be 

deve lop  f rom the f r a m e w o r k  of  the  gene ra l i zed  G u g g e n h e i m  c o m b i n a t o r i c s  

I Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19 24, 
1994, Boulder. Colorado. U.S.A. 

-'Chemical Engineering Department, Sogang University, C.P.O. Box 1142, Seoul, South 
Korea. 

~To whom correspondence should be addressed. 
4 Jungwno Coal Chemical Co. Ltd.. Taein 1658, Tonkwangyang. Chollanamdo, South Korea. 

Chenaical Engineering Department, Korea University. Seoul 136-701, South Korea. 

723 

(ll'#5-q28X '45 05011-07235(17.511 O c 19q5 Plenum Publishing Corp~rati~n 



724 Shin, Yoo, You, and Lee 

of lattice statistical mechanics [ 1, 2]. Indeed, several practical models have 
originated in this way. The excess function models, such as Flory-Huggins 
[3, 4], UNIQUAC [5] ,  and various extended versions of these models are 
based on the rigid lattice description. From a lattice fluid model with holes, 
a volumetric equation of state (EOS) can be developed. After the work of 
by Sanchez and Lacombe [6, 7], several EOS-type models have been 
proposed [8-12"1. Recently the present authors have proposed a new 
approximation to the Guggenheim's combinatorics and a new rigorous 
EOS {R-EOS} [ 13-15]. While maintaining the accuracy of this EOS, we 
also formulated a simplified EOS (S-EOSJ version which is more flexible 
for use in engineering practice [ 16]. In this work we present a comparison 
of the usefulness of both EOSs for the quantitative description of various 
types of multiphase equilibria for molecularly complex systems. 

2. A NEW ELEMENTARY HELMHOLTZ FREE ENERGY 

As we have discussed elsewhere [13-16],  the configurational part 
of the nonrandom lattice hole partition function based on the full 
Guggenheim combinatorics can be written as 

..QC = g R  gNR e x p ( - f l U )  I1) 

where gR denotes the random contribution of the Guggenheim combina- 
torial term and gNR the nonrandom contribution. The potential energy U 
is equal to Z Nii( - e i i }+  Z Z  N~j( - t:g/}. Here e, ij is the absolute value of the 
interaction energy between molecular segments i and j. When the lattice 
interchange energy xle 0 is defined as e~+egi-2e,~., the nonrandomness 
factor, Fgi is given by F~i=F,l'~iexp(-flAe~j}. An "athermal solution" 
corresponds to taking U = 0 ,  and for this solution the nonrandomness 

(} 
factor F 0 is 1, or N~j = N~j. Then the configurational Helmholtz free energy, 
A ~ may be obtained from the relation flA c = - I n  I2 c using Eq. ( 1 }. 

As we discussed elsewhere [13],  a new configurational Helmholtz 
energy based on the full Guggenheim combinatorial term can be derived by 
expanding A ~ around the reference athermal solution in terms of e,j. The 
resulting expression of A ¢ is given by 

A~=A~+ Z E - -  eu+ Z Z Z E  - -  ei.iek, 
i>~j \OEO'/  i>~.i t , '>~/ \O'Sl,tO'Sij/ 

(2} 

When the algebra is done, the following generalized rigorous expression of 
A c for multicomponent systems can be obtained from Eq. (2): 
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f l A ¢ = y ' . N i l n p i + N o l n ( 1 - P ) - - 2 N q l n [ l + ( q l - - . - ~ M - 1 ) p ] - ( ~ q ) [ 3  

where fl = l /kT, Oi = Niqi/Nq, qM = Z xiqi, rM = Y~ xiri, Pi= Niri/Nr, 
P = Y'. Pi, and x~ is the mole fraction of species i. The lattice interaction 
energy e u is defined as ~ j ) ( 1  -2 , j ) ,  where the 2~j is the binary inter- 
action parameter, and e~i between holes and molecular species is set to zero. 
All configurational thermodynamic functions can be formulated from 
Eq. (3). The first term on the r.h.s, of Eq. (3) is the athermal part A c~A~, the 
second term is due to the random contribution of the potential energy, and 
the third term represents the nonrandom contribution of the potential 
energy. 

3. SIMPLIFIED VERSION OF H E L M H O L T Z  FREE ENERGY 

We now propose an empiricization based on the same lattice concepts. 
While retaining the athermal part, we replace the remaining two terms in 
Eq. (2) by the sum of the "ideal solution" term and "excess" term as 

A c = A c ~ A I  q -- A cots) + A ¢~E~ (4) 

where the athermal part from Eq. (3} is given by 

: L (q )1 [ 3 A ¢ ( A l = ~ N i l n p i + N o l n ( 1 - p ) - ~ N u l n  1+ - 1  p (5) 

The remaining parts in Eq. (4) are obtained based on the following 
assumptions; holes are randomly placed and the total surface area fraction 
occupied by molecules is the same whether molecules are in pure state or 
in mixtures. Then a similar method as used in the derivation of the 
UNIQUAC model results in the following expressions: 

_A~¢Is~ = :Nq 0 2 Niqieii (6) 
2 

flAC~Ei = .Tgq r {)izji ] ( 7  ) - 2 2 0 ' ln L 2  

where vu=exp[flO(sj~-e~) ] and quantities with an overbar denote on a 
hole-free basis. The summation of Helmholtz free energies given by Eqs. (6) 
and (7) yields a version of the configurational Helmholtz free energy which 
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is simplified with respect to Eq. (3). This fi'ee energy expression is similar 
to that of the UNIQUAC model: the main difference is that the com- 
binatorial term here is density dependent. 

4. EOS A N D  C H E M I C A L  P O T E N T I A L S  FOR M I X T U R E S  

From the rigorous and simplified configuration Helmholtz free energy 
equations given by Eqs. (3), (6), and {7), respectively, expressions for con- 
figurational thermodynamic properties can be obtained for each case. Since 
the volume V is represented by I ' =  VH(No+Y'N~r~), both EOSs are 
obtained from the relation P =  -1/Vw(SA~/ONoJr.x,. When the algebra is 
done, we have the following apparently identical forms of the EOS: 

1 {2  [ (qU--l)1 ln(1--P) } ( ~ ) 0  2eM P=,,-=-T:-. In 1 + p - - (8) 
P~H \ r  M I~'ll 

where the eM of rigorous case differs from the simplified case as follows: 

'I 
(9) 

,:'#= E 0,,:,, + E 0, E 0, l, 01 
Z 0t- T~.i 

Here ~:M*'R~ denotes for the rigorous case and ~,S~.M for the simplified case. 
The chemical potential of component i in a mixture for both cases can 

be obtained from the equation: #,=N~,(~A/~Ni)r.j.=N~,(SA/ON~).r.x,,+ 
GN,, VHP. Here N~, is Avogadro's number. The resulting equations for both 
cases are written by 

~S) Ill llli AI /lli R) Ill  ~lli A) ~_lli 
- t- - -  and - ( 11 ) 

RT RT RT RT RT RT 

where 

RT=},~(T)-rs ln(1-p)+ln 0-2" + G i n  1+ q M - I  p 
\qi/  \rM 

flliR ' .Tq i fl,*;M 02 

RT 2 

(12) 

1 ri 2ZOjEJJ+flZY'ZOkOlOm~:i*(ei*+2*:"'--2e*'--e")] (13) 
qi 02gM 
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/ l l  S~ zqifleMOZ[ r i 1(1-I-..__.__~.ii)] 
RT ~ 1 qi 0 ~:M J 

+ ~ [ l - - l n ( ~ { ) j r j i ) - - ~  Oirii l (14) 
0k r/,:i J 

where 7i(T) is the reference chemical potential, which depends only on 
temperature. 

These general equations for multicomponent mixtures easily reduce to 
their pure forms since all e M become t:, and raj become 1 for a pure fluid. 
Although not presented here, other thermodynamic properties can be 
derived for mixtures from both equations for the Helmholtz free energy 
[13-16].  The critical point for the vapor-liquid phase transition is 
determined from the classical criticality conditions; (OP/Op)r=O and 
~-P/Op2)r---O. Once expressions for the criticality conditions are 
evaluated, the critical compressibility factor Z~=r~P~/T~p~ is readily 
calculated. 

5. M O L E C U L A R  PARAMETERS 

In formulating both EOSs, the general relation in lattice theory, zqt = 
:rt - 2rt + 2 is used. We also define the characteristic volume V~* as Vt* = 
N, l:l,r ~. Therefore the characteristic volume gives sufficient information 
for determining r~ and q~. The other molecular parameters are the interac- 
tion energy e~,  the coordination number :, and the unit cell volume V H. 
We set z =  10 and V H =9.75 cm 3 .mol -  t [13].  Thus, both models require 
two molecular parameters, V~* and ~:~j, respectively for each pure 
component. 

Based on experimental data, the parameters V~* and p.t~ are deter- 
mined by regression analysis at each isotherm and readily fitted to the 
following empirical correlations as a function of temperature for an easy 
engineering practice. 

el~=E.,+EbT+Ecln T and V,*= Va-F l/'bT-t- Vein T (15) 
k " 

Compilations of the estimated values of the coefficients for pure com- 
ponents in Eq. (15) are summarized in Ref. 13 for the R-EOS and in Ref. 16 
for the S-EOS for up to 200 pure fluids. They include nonpolar, weakly 
polar, strongly polar, supercritical, and polymeric substances. Accordingly 
we have used these values in the illustrations in the next section. Due to the 
limited space here, the parameters are not tabulated here. 
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6. C O M P A R I S O N  OF M O D E L S  WITH E X P E R I M E N T  

Since we discussed the computational aspects and the comparison of 
both models with experiments elsewhere [13-16], only a few results are 
given here. For pure systems, both models quantitatively fit the experimen- 
tal equilibrium properties such as vapor pressures, saturated densities, and 
heats of vaporization. However, we experience some degree of inaccuracy 
in fitting such data in the immediate vicinity of the critical point due to the 
intrinsic nature of the mean field approximation in the configurational 
lattice partition function. Thus for pure systems, we do not recommend 
either model for the immediate vicinity of critical region (( T - T c ) / T  ~ < 0.1 
and ( P -  Pc)/P¢ <O.1 ). 

The extensive compilations of the binary interaction energy 
parameters, 2ij, and the range of errors for various types of binary mixtures 
are reported by the present authors in Refs. 14 and 15 for R-EOS and in 
Ref. 16 for S-EOS. The types of binary systems we tested are the VLE and 
VSE of polar mixtures, supercritical systems, and polymer solutions 
[13-16]. Here we only demonstrate a few comparative results for such 
systems. In Fig. 1, results calculated from the R-EOS and S-EOS for 
isothermal vapor-liquid equilibria for the CO,-methanol system [8] are 
shown, together with the results computed from the PR-EOS [19], the 
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Fig. I. Comparison of various models for the vapor-liquid 
equilibria of carbon dioxide-methanol system at 290.0 K. 
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Fig. 2. Comparison or various models for the activities or 
cyclohexane in polyisobutylene solutions at 298.15 K. 
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Fig. 3. Comparison o f  our two models with group contribution 
models for the activities of benzene in polypropylene solution. 
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random case [8] ,  and the model by Kumar  et al. [11 ]. This figure shows 
that the results of the present models fit data better than other models in 
the same genre and the PR-EOS. 

In Fig. 2, calculated results by the R-EOS and S-EOS with activity 
data of cyclohexane in polyisobutylene solution [21, 221 arc comparcd 
with the EOSs by Flory [20],  Sanchez and Lacombe [6, 7], Kumar  et al. 
[11],  and Panayiotou and Vera [8] .  While the present models and the 
Flory-EOS fit the data well, the results of other models show larger errors 
for this system We found similar trend for other systems [ 16]. Finally in 
Fig. 3 the calculated results for the present EOSs for activities of benzene 
in polypropylene solution [23, 24] are compared with the existing group 
contribtltion methods which are used frequently in engineering practice for 
polymer systems. They include the UNIFAC-FV [25],  HA [26] ,  and 
G C L F  [27] models. The results of the present EOSs fit the data sur- 
prisingly well and provide a possibility of reformulating the S-EOS as the 
group contribution model. Accordingly, an extension of the S-EOS as a 
group contribution method is under way by the present authors. 

In summary, by expanding the Helmholtz free energy from the full 
Guggenheim combinatorial term of nonrandom lattice hole theory, a new 
rigorous EOS is developed and its applicability was demonstrated. To 
make the R-EOS simpler and more versatile, we propose a new modifed 
S-EOS by introducing the local composition concept. Both EOSs were 
tested for their ability to represent the phase equilibrium behavior of pure 
components and mixtures. With two parameters for pure each component  
and one binary interaction energy parameter, results obtained to date 
demonstrate that both models are quantitatively applicable to a wide range 
of temperatures, pressures and concentrations. 
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