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A New Nonrandom Lattice Fluid Model and
Its Simplification by Two-Liquid Theory for
Phase Equilibria of Complex Mixtures'

M. S. Shin,> K. P. Y00,* S. S. You,* and C. S. Lee*®

A new riogorous equation of state (EOS) and its simplified version have been
proposed by the present authors based on the full Guggenheim combinatorics
of the nonrandom lattice hole theory. The simplified EOS. with the introduction
of the concept of local composition. becomes similar to the density-dependent
UNIQUAC model. However, in the present approach we have a volumetric
EOS instead of the excess Gibbs function. Both EOSs were tested for their
applicability in correlating the phase cquilibria behavior of pure components
and complex mixtures. Comparison of both models with experiment includes
such systems as nonpolar nonpolar, nonpolar. polar, and polar;polar hydro-
carbons, supercritical systems, and polymer solutions. With two parameters for
each pure component and one binary interaction energy parameter, results
obtained to date demonstrate that both formulations are quantitatively
applicable to complex systems oer a wide range of temperatures, pressures, and
concentrations.

KEY WORDS: complex mixtures: equation of state: multiphase equilibria:
nonrandom lattice theory: polymer solutions; supercritical fluids.

1. INTRODUCTION

Various formulations of thermodynamic theories of solutions can be
develop from the framework of the generalized Guggenheim combinatorics
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of lattice statistical mechanics [ 1, 2]. Indeed, several practical models have
originated in this way. The excess function models, such as Flory-Huggins
[3.4], UNIQUAC [5], and various extended versions of these models are
based on the rigid lattice description. From a lattice fluid model with holes,
a volumetric equation of state (EOS) can be developed. After the work of
by Sanchez and Lacombe [6,7], several EOS-type models have been
proposed [8-12]. Recently the present authors have proposed a new
approximation to the Guggenheim’s combinatorics and a new rigorous
EOS (R-EOS) [13-15]. While maintaining the accuracy of this EOS, we
also formulated a simplified EOS (S-EOS) version which i1s more flexible
for use in engineering practice [ 16]. In this work we present a comparison
of the usefulness of both EOSs for the quantitative description of various
types of multiphase equilibria for molecularly complex systems.

2. A NEW ELEMENTARY HELMHOLTZ FREE ENERGY

As we have discussed elsewhere [13-16], the configurational part
of the nonrandom lattice hole partition function based on the full
Guggenheim combinatorics can be written as

Q°=gp gnr eXp( —fU) (1)

where gp denotes the random contribution of the Guggenheim combina-
torial term and gnr the nonrandom contribution. The potential energy U
is equal to > N;(—e¢;) + 23 N;( —¢;). Here ¢ is the absolute value of the
interaction energy between molecular segments / and j. When the lattice
interchange energy de; is defined as ¢;+¢;—2¢,. the nonrandomness
factor, I'; is given by I';=1I,I,exp(—p 4e;). An “athermal solution”
corresponds to taking U—O and for this solution- the nonrandomness
factor I';is 1, or N" .. Then the configurational Helmholtz free energy,
A* may be obtamed from the relation f4°= —In Q° using Eq. (1).

As we discussed elsewhere [13], a new configurational Helmholtz
energy based on the full Guggenheim combinatorial term can be derived by
expanding A° around the reference athermal solution in terms of &,;. The

resulting expression of A€ is given by
aAL (%) a AL [¢]
_AL+ZZ< ) ()z Zzz(@g >g,.,gk, 2)
izj =/ izj k=l

When the algebra is done, the following generalized rigorous expression of
A¢ for multicomponent systems can be obtained from Eq. (2):
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ﬂAc=zN,-1np,.+N01n(1_p)_quln[1+<@_l>p}_<:_1;Q>/}

m

where f=1/kT, 6,= Nigi/Ny, qm=2x:q;, rm=2 x;ir;, p;=Nir/N,,
p=2 p;, and x; is the mole fraction of species i. The lattice interaction
energy & is defined as /(e;¢;)(1 — 4;), where the 2, is the binary inter-
action parameter, and ¢; between holes and molecular species is set to zero.
All configurational thermodynamic functions can be formulated from
Eq. (3). The first term on the r.hs. of Eq. (3) is the athermal part A", the
second term is due to the random contribution of the potential energy, and
the third term represents the nonrandom contribution of the potential
energy.

3. SIMPLIFIED VERSION OF HELMHOLTZ FREE ENERGY

We now propose an empiricization based on the same lattice concepts.
While retaining the athermal part, we replace the remaining two terms in
Eq. (2) by the sum of the “ideal solution” term and “excess” term as

Ac=Ac(A)+Ac(lSl+Ac(E) (4)
where the athermal part from Eq. (3) is given by

BA“M =% N;Inp,+ N, In(1 —p)—%qun[l+<z—M— l>p] (5)
= M
The remaining parts in Eq. (4) are obtained based on the following
assumptions; holes are randomly placed and the total surface area fraction
occupied by molecules is the same whether molecules are in pure state or
in mixtures. Then a similar method as used in the derivation of the
UNIQUAC mode! results in the following expressions:

=N
—AC(IS)=—£_‘I()ZNiqi8ii (6)

N 0
__/),Ac(m:_z_‘lz Hiln[zairji:‘ )

where t;=exp[ ff(e;—¢;)] and quantities with an overbar denote on a
hole-free basis. The summation of Helmholtz free energies given by Eqgs. (6)
and (7) yields a version of the configurational Helmholtz free energy which

840 16:3-10
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is simplified with respect to Eq. (3). This free energy expression is similar
to that of the UNIQUAC model; the main difference is that the com-
binatorial term here is density dependent.

4. EOS AND CHEMICAL POTENTIALS FOR MIXTURES

From the rigorous and simplified configuration Helmholtz {ree energy
equations given by Egs. (3), (6), and (7), respectively, expressions [or con-
figurational thermodynamic properties can be obtained for each case. Since
the volume J7 is represented by I '=FV,(N,+> N;r;), both EOSs are
obtained from the relation P= —1/V{(GA°/ONy) ».. When the algebra is
done, we have the following apparently identical forms of the EOS:

/”1“{—1 [l+<’ll';' >p}—ln(l—p)} <>() l“ (8)

where the ¢,, of rigorous case differs {rom the simplified case as follows:

P

IEIU_ [ZZ()’{)} +< >ZZZZU:(}/0 (),{‘,/(FU+3FAI _7Flk):|

(9)

0
oy = Z();,,+Z()Z——‘T"“" z (10)
Z()/.T/.,

Here &\’ denotes for the rigorous case and ¢}’ for the simplified case.

The chemical potential of component i in a mixture for both cases can
be obtained from the equation: u,= N (OA/ON,)r, =N (OA/ON}r n, +
riN,VyP. Here N, is Avogadro’s number. The resulting equations for both
cases are written by

tA) (R) tA) (S)

i wN

Ri Ko +ﬂ' d + (1
oA o8 SRR ot B an Rl NN o B ot
RT RT RT RT RT RT

where

(A) 0.

l;'—T=;’,(T) ;ln(l—p)+ln<—’>+r,.ln{l+(1M >p] (12)

qi m
R g femO?
RT 2
X

1__’_!_22(}/&1/+ﬁzzz(} () ()m IA(Eik+26/m 261\/ ) (13)
qi ey
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i :q,-/)’aM()Z[] i 1(l+eg,)
q: 0 &epm

zy, _ 7} i
+%’[1—1n<2(},rﬁ>—2_’#] (14)

04y

where y,(T) is the reference chemical potential, which depends only on
temperature.

These general equations for multicomponent mixtures easily reduce to
their pure forms since all £, become ¢, and 7, become 1 for a pure fluid.
Although not presented here, other thermodynamic properties can be
derived for mixtures from both equations for the Helmholtz free energy
[13-16]. The critical point for the vapor-liquid phase transition is
determined from the classical criticality conditions; (3P/dp)r;=0 and
(0°P/op?)r=0. Once expressions for the criticality conditions are
evaluated, the critical compressibility factor Z.=r P /T .p. s readily
calculated.

5. MOLECULAR PARAMETERS

In formulating both EOSs, the general relation in lattice theory, =g, =
ory—2r, + 2 is used. We also define the characteristic volume V¥ as V¥ =
N, Vi r,. Therefore the characteristic volume gives sufficient information
for determining r, and ¢,. The other molecular parameters are the interac-
tion energy &,,, the coordination number =, and the unit cell volume V.
We set z=10 and ¥,;=9.75cm* - mol ' [13]. Thus, both models require
two molecular parameters, V' * and ¢,,. respectively for each pure
component.

Based on experimental data, the parameters V' * and ¢,, are deter-
mined by regression analysis at each isotherm and readily fitted to the
following empirical correlations as a function of temperature for an easy
engineering practice.

e

Do E 4+ET+E.InT and Vr=V,+V,T+V.InT (15)

Compilations of the estimated values of the coefficients for pure com-
ponents in Eq. (15) are summarized in Ref. 13 for the R-EOS and in Ref. 16
for the S-EOS for up to 200 pure fluids. They include nonpolar, weakly
polar, strongly polar, supercritical, and polymeric substances. Accordingly
we have used these values in the illustrations in the next section. Due to the
limited space here, the parameters are not tabulated here.
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6. COMPARISON OF MODELS WITH EXPERIMENT

Since we discussed the computational aspects and the comparison of
both models with experiments elsewhere [13-16], only a few results are
given here. For pure systems, both models quantitatively fit the experimen-
tal equilibrium properties such as vapor pressures, saturated densities, and
heats of vaporization. However, we experience some degree of inaccuracy
in fitting such data in the immediate vicinity of the critical point due to the
intrinsic nature of the mean field approximation in the configurational
lattice partition function. Thus for pure systems, we do not recommend
either model for the immediate vicinity of critical region ((T— T,)/T. < 0.1
and (P— P.)/P.<0.1).

The extensive compilations of the binary interaction energy
parameters, 4;, and the range of errors for various types of binary mixtures
are reported by the present authors in Refs. 14 and 15 for R-EOS and in
Ref. 16 for S-EOS. The types of binary systems we tested are the VLE and
VSE of polar mixtures, supercritical systems, and polymer solutions
[13-16]. Here we only demonstrate a few comparative results for such
systems. In Fig. 1, results calculated from the R-EOS and S-EOS for
isothermal vapor-liquid equilibria for the CO,-methanol system [8] are
shown, together with the results computed from the PR-EOS [19]. the

/I/Data of Hong et al.[18]

/ B 2900K

— ~ ~ Random(i, =-0.0201)

————— Kumar et al.[1 1)(x, = 0.0575)
PR-EOS[19](k, = 0.0568)

— 7 Present R-EOS(%, = 0.0575)

— " S-EOS(r, =-0.1403)

Pressure, MPa
w
T

0.0 0.2 04 06 0.8 1.0
Mole fraction of CO,

Fig. 1. Comparison of various models for the vapor-liquid
equilibria of carbon dioxide-methanol system at 290.0 K.
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Fig. 3. Comparison of our two models with group contribution
models for the activities of benzene in polypropylene solution.
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random case [8]. and the model by Kumar et al. [ 11]. This figure shows
that the results of the present models fit data better than other models in
the same genre and the PR-EOS.

In Fig. 2, calculated results by the R-EOS and S-EOS with activity
data of cyclohexane in polyisobutylene solution [21,22] are compared
with the EOSs by Flory [20]. Sanchez and Lacombe [6, 7], Kumar et al.
[11]. and Panayiotou and Vera [8]. While the present models and the
Flory-EOS fit the data well, the results of other models show larger errors
for this system. We found similar trend for other systems [ 16]. Finally in
Fig. 3 the calculated results for the present EOSs for activities of benzene
in polypropylene solution [23, 24] are compared with the existing group
contribution methods which are used {requently in engineering practice for
polymer systems. They include the UNIFAC-FV [25]. HA [26], and
GCLF [27] models. The results of the present EOSs fit the data sur-
prisingly well and provide a possibility of reformulating the S-EOS as the
group contribution model. Accordingly, an extension of the S-EOS as a
group contribution method is under way by the present authors.

In summary. by expanding the Helmholtz free energy from the full
Guggenheim combinatorial term of nonrandom lattice hole theory, a new
rigorous EOS is developed and its applicability was demonstrated. To
make the R-EOS simpler and more versatile, we propose a new modified
S-EOS by introducing the local composition concept. Both EOSs were
tested for their ability to represent the phase equilibrium behavior of pure
components and mixtures. With two parameters for pure each component
and one binary interaction energy parameter, results obtained to date
demonstrate that both models are quantitatively applicable to a wide range
of temperatures, pressures and concentrations.
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